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Abstract-The electromagnetic inverse scattering of a complex
cylinder illuminated by transverse electric (TE) waves is investi-
gated. The complex cylinder is a conductor coated by dielectric
materials. A group of various unrelated TE waves is incident
upon the object and the scattered fields are measured outside.
With prior knowledge of the conductor’s shape, the complex
permittivity distribution of the dielectric materials can be re-
constructed. The algorithm is based on the moment method and
the unrelated illumination method. Some numerical examples are
given to demonstrate the capability of the algorithm. Numerical
results show that the dielectric constant and the conductivity
dktribution of the materials can be reconstructed even when the
scattered fields are contaminated by random Gaussian noise.

I. INTRODUCTION

THE INVERSE scattering problem is to reconstruct the
shape or the dielectric constant of an unknown scatterer

from the scattering data measured outside. This problem
has attracted increasing attention owing to interests in re-

mote sensing, medical imaging, and nondestructive evaluation.

Generally speaking, two categories of approaches have been
developed for the inverse scattering problem. This first is the
approximate approach, such as the physical optics method

[1]-[3], the Born and the Rytov approximations [4]-[6]. The
inverse problem can be simplified if some approximations

are properly applied. However, there are limitations on these

approximations [1]–[6]. The second approach is to solve the
exact equations rigorously by numerical methods [7]–[14].
The rigorous one does not need approximation in formulation,
but its computation is more complicated than the approximate
one. Besides, most papers for two-dimensional (2-D) inverse
problem with the rigorous approach are dealt with TM wave
illumination because the vectorial problem can be simplified
to a scalar one. Two-dimensional inverse problem for the TE
waves is scarce [15], [16]. Based on the Newton–Kantorovitch

method, an iterative algorithm to reconstruct the permittivities

of a dielectric object was proposed by Joachimowicz et al.

[15]. Otto and Chew developed ‘the local shape-function al-
gorithm for the imaging of dielectric objects illuminated by
the TE waves. They used the T-matrix formulation instead of
standard integral equation method [16].

In this paper, the electromagnetic imaging of a complex
cylinder illuminated by TE waves is investigated. The complex
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Fig. 1. Geometry of the problem in the (x, y) plane.

cylinder is a conductor coated with dielectric materials. By
the knowledge of the conductor’s shape and the scattered field
measured outside, the permittivity distribution of the dielectric

materials has been reconstructed. This method is potentially
important in medical imaging and biological applications. In

Section II, the theoretical formulation is presented. Numerical
results are given in Section III. Finally some conclusions are
drawn in Section IV.

II. THEORETICALFORMULATION

Fig. 1 shows the geometry of the problem, A conductor
coated by dielectric materials located in the free space is
infinitely extended in the z-direction. The relative complex
permittivity cc can be expressed as

.Cr(x, y)
E.(z, y) = %(~, Y) – ~~.

Note that the e~wt time dependence is assumed for the for-
mulation.

Incident waves with the electric field polarized in the x-y

plane, i.e., transverse electric (TE) waves, is incident upon the
object. Owing to the added difficulty of induced polarization
charges, this vectorial problem cannot simplified into a scalar
one. Thus the equivalent current concept and Hertz vectorial
potential techniques are employed to solve the problem. The
integral equation for the field inside the materials can be
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expressed as follows [17], [18]:

)[/-E:(T) = (~ +M , G(T-, T“)(@’) – l)&(d)dS’
1

82
+—

[/azog ,
G(7, F’)(cC(F’) – l)~y(~’)ds’ 1

13

[/‘&j . 1G(T, F’)M. (#)dl’ – E,(T) (1)

– E;(T)

—
[/

G(T, 7’)(cC(7’) – l) Ez(T’)ds’
ady . 1

; )[/
~+k;
~y2

G(T-, F’)(CC(T’) – l)Ev(~’)~s’
,~ 1

t?—
-[/h: , 1

G(F, F’)Lfs(F’)dl’ – 13Y(F) (2)

where E; and El are the x and y components of the incident
field, respectively. E. and EY are the z: and y components of
the total field, respectively. ill, is the equivalent magnetic
surface current density in the z direction. G (T, #) is 2-D
Green function for free space

Here 11~2) stands for the Hankel function of the second kind

of the zeroth order.
Since the tangential components of E on the surface of the

perfect conductor should be zero, one can obtain the following
integral equation:

_fix(E; (F)t + E;(~)ij)

“x{[(:+”)
L.) s

7+s-[/dxq,l ,3
G(T, T’)(c.(T’) –

J

l)EJ#)ds’
1

[–[/

i32
t-hay ,

G(T-, #)(q-(T-’) – l) EZ(F’)ds’
1

‘( )[1

~
+ ~+k:~y2 ,,

G(F, F’)(cC(T’) – l)-EV(F’)ds’
1

a’—
-/ax ‘ 1}

G(7=,TJ)M, (7=’)dr j (3)

where ii is the outward unit vector normal to the surface of

the conductor. The scattered field outside the scatterer can be
expressed by

E;(F)= (~+k;)[~ G(F, F’)(cC(F’) – l) EZ(F’)ds’
1

az
+—

[/
G(T-, 7’)(~C(#) – l) Ey(#)ds’

axay , , 1

+1
[1t?y ~

G(T-, #)lkf~(F’)dl’
1

(4)

E;(7) .< [JL3xay ~
G(T-, F’)(cC(F’)– l)&.(7’)ds’

1

‘G+kw
G(F, F’)(eC(F’) – l) EY(F’)ds’

1

a—
-[/ilr, c 1G(F, F’)Afs(F’)dl’ . (5)

In order to solve the direct problem for given e,(T) and

conductor’s shape, the moment method is applied. The di-

electric materials are divided into N1 sufficient small cells
such that the total field and the permittivity can be considered
constant in each cell. Similarly, the contour of the conductor
is divided into N2 sufficient segments. Thus the equivalent
magnetic surface current density over each segment can be

taken as constant. By employing the point-matching technique,
(1)-(5) can be transformed into matrix equations

-(E;) = [G,] [T] + [G7][T] + [Gs](M,) (7)

()[E;

1[ 1_ [G9] [GI()] [T] O

E; – [GIO] [GIz] O [T]

“R)+IWMJ ‘8’

where (E; ) and (E;) denote the NI element incident field
column vectors. (EX ) and (EU) are N1 element total field

column vectors. (E~ ) represents the N.2 element incident
column vector. (,?3~) and (EJ ) are the M element scattered
field column vectors. Here M is the number of measurement

points. (if,) is the Nz element column vector. The matrices

[Gl], [Gz] and [G,] are N, x NI square matrices. [G3] and
~G5\ are N, x Nz matrices. [G6] and [G7] are Nt x NI
matrices. [Gs] is a Nz x Nz matrix. [G9], [Glo] and [G12] are
M x NI matrices. [Gll] and [G13] are flf x N2 matrices. The
elements in matrices [G,], i = 1, 2, . . . . 13, can be computed
by complex mathematics manipulation (see Appendix). [T] is

a N1 x N1 diagonal matrix whose diagonal element [~]~~ is
equal to (c. ),,,, —1. [1] is a NI x NI identity matrix. The direct
problem can be solved by using matrix equations (6)-(8).

The inverse problem is, given the shape of the conductor
and the measured scattered field, compute the permittivity
distribution of the dielectric materials. To solve this problem,
(AZ,) in (7) is first computed and substituted into (6) and
(8). Next we use 2Nl different incident column vectors to
illuminate the object, the following equations are obtained:

-[E;] = ([G,I] [T,] - [I,]) [E,] (9)

[E:] = [G,2][T,][E,] (lo)
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where

[

E: – [G3][G8]-l(EjJ
[E~l= q - [G5][G8]-l(qJ

1

E; + [GII][GJ1(E:)
[E:] = [E;+ [G1,][GJ’(E;)

1

[1
[Et] = ;

[Gtl] =
[

[Gl] - [GF);8]-1[G6] [G2]

[G4] - [G,] [G8]-1[G7] 1

[Gt2] =
[

[G,] - [Gt#f]-’[G6] [Glo]
[G,,] - [G,3][G8]-’[G7] 1

Here [E;] and [-Et] are both 2NI x 2N1 matrices. [E;] is

a ill x 2N1 matrix. Note that the matrix [G8] is diagonally

dominant and always invertible. It is worth mentioning that

other than the matrix [Gt2], the matrix [Gt 1][~t]– [It] is always

a well-posed one in any case. Therefore (9) can be rewritten as

[J%]= -([G,][n]- [L])-l[E:I. (11)

Substituting (11) into (10), we get

([E;] [E;] -’[Gtl] + [G,z])[T,] = [E:] [E:] -l.

If we use the following matrix notations:

[T,] =[E;][E;]-l[G,I] + [G,z].

Then [t-t] can be found by solving the following equations:

[’JZ’][7,]= [(it)’]. (12)

From (12), all the diagonal elements in matrix [-r] can be

determined by comparing the element with the same subscripts

which may be any row of both [’Vt] and [~’]:

Then the permittivities of each cell can be obtained as follows:

Note that there are a total of 2A4 possible values for each
element of T. Therefore, the average value of these 2A4 data
is computed and chosen as final reconstruction result in the

In the above derivation, the key problem is that the incident
matrices [E;] must not be a singular matrix, i.e., all the

incident column vecto$s that form the [E:] matrices, must be

linearly unrelated. Thus, if the object is illuminated by a group

of unrelated incident wave, it is possible to reconstruct the

permittivity distribution of the materials. Note that when the
number of cells becomes very large, it is difficult to make
such a great number of independent measurements. In such a
case, some regularization methods must be used to overcome

the ill-posedness.

III. NUMERICALRESULTS

In this section, we report some numerical results obtained by

computer simulations using the method described in Section

II. Lossy dielectric materials coats on a perfectly conducting
rod of different cross-sections are considered. The sensitivity
of this method to random Gaussian noise in the scattered field
is also investigated.

The frequency of the incident waves is chosen to be 3
GHz and the number of illuminations is the same as that of
cells. The incident waves are generated by numerous groups

of radiators operated, simultaneously. Each group of radiators

is restricted to transmit a narrow bandwidth pattern which can

be implemented by antenna array techniques. By changing the

beam direction and tuning the phase of each group of radiators,

one can focus all the incident beams in turn at each cell of the
object. This procedure is named “beam focusing” [12]. Note
that this focusing should be set when the scatterer is absent.
Clearly, an incident matrix formed in this way is diagonally
dominant and its inverse matrix exists. The measurement is
taken on a circle of radius 0.1 m. For avoiding trivial inversion
of finite-dimensional problems, the discretization number for
the direct problem is four times as that for the inverse problem
in our numerical simulation.

A 5 cm x 5 cm (1/2 wavelength x 1/2 wavelength) square
rectangular cross-sections of a perfectly conducting rod coated

with dielectric materials with rectangular cross- sections is our
first example. The dielectric materials are discretized into
10x 10 cells and their relative permittivities are plotted in
Fig. 2. Each cells has a 0.5 cm x 0.5 cm cross section. The
reconstructed results are shown in Fig. 3. Note that there are

totally 768 data points being used for this example. The root

mean square error is about 1.570 for the complex permittivity
EC.It is apparent that the reconstruction is good.

In the second example, the circular cross-section of dielec-
tric materials coated on a cylindrical conductor is discretized
into 90 cells and their relative permittivities are plotted in
Fig. 4. The radius of conductor and the dielectric materials
are 1 cm and 2.5 cm (1/4 wavelength), respectively. The
reconstructed results are shown in Fig. 5. Note that there are
totally 1620 data points being used. The root mean square
error is about 2.9% for the complex permittivit y CC.We can
see the reconstruction is also good.

To investigate the effects of noise on our inverse algorithm,
we added Gaussian noise with zero mean to the real and
imaginary parts of the simulated data. Normalized standard

simulation. deviations of 0.001%, 0,01%, 0,1%, l%, and 10% are used in
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(a)

(b)

Fig. 2. Original complex relative permittlwty dmtnbution, ●c(.r, y), for
example 1. (a) Thereal part of cr(r, y). (b) Theimaginmyp artof e.(.t. y),

the simulations. Note that thenormalized standard deviation is

defined as the standard deviation of the Gaussian noise divided

by the root mean square value of the scattered field. The

numerical results for example, 1 and 2 are plotted in Fig. 6.

We can see that the reconstruction is still good even O. 1‘%

noise exists.
Our method depends on the condition number of [E;], i.e.,

on having 2N1 unrelated measurements. The procedure will
generally not work when the number of unknowns gets very
large. This is due to the fact that is is difficult to make such a
great number of measurements and make them all unrelated.
As a result, the condition number of [E;] will become large
while the number of unknowns is very large. In such a case,
the regularization method should be employed to overcome the

(b)

Fig. 3. Reconstructed complex relative permittlvity distribution, ec (r, y),
for example 1. (a) The real part of f, (.r. g). (b) The imaginary part of
Cc(r. y).

illposedness. For instance, the singular value decomposition
technique [8] can be applied for the inversion of the [E:]
matrix.

IV. CONCLUSION

Imaging algorithm for the TE case is

than that for the TM case, due to the

more complicated
added difficulties

in the polarization charges. Nevertheless, the polarization
charges cannot be ignored for this two-dimensional problem
and all three-dimensional problems. In this paper, an efficient
algorithm for imagine a complex cylinder, i.e.. a conductor
coated with dielectric materials, illuminated by TE waves, has
been proposed. By properly arranging the direction of various



CHIUANDLIU: IMAGE RECONSTRUCTION OF A COMPLEX CYLINDER

(a)
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(a)

(b)

Fig.4. Original complex relative permittwity distribution, cC(T, y),
example2. (a) Thereal part of t-.(x, y). (b) The imaginary part of ~~(z,

for

Y).

unrelated waves, the difficulty of illposedness and nonlinearity
is avoided. Thus, the dielectric constant and the conductivity

distribution can be obtained by simple matrix operations. This
algorithm is very effective and efficient, since no iteration is
required. The further research is the application of this method
on the inverse problem of composite materials coated on the
metal and aircraft.

APPENDIX

The element in the matrix [Gl] can be written as

‘G’’+G+”)
//

I& (/%0/(zm – Z’)2+ (ym – y’)yz’dy’
cell n

8

(b)

Fig. 5. Reconstructed complex relative permittivlty distribution, e~(.r, Y),
for example 2. (a) The real part of CC(x, y). (b) The imaginary part of

6.(X> Y).

where (zm, ym ) is the observation point located in the center

of the mth cell. Note that the observation point is expressed

as (Ym, ym) in Cartesian coordinates and (T~t, ~m ) in Polar

coordinates. For a sufficient small cell, we can replace the cell

by a circular cell with the same cross section [19]. Let the

equivalent radius of the nth circular cell be an. Then (G I )mn

can be expressed in a simple analytic form

{

— ‘“””$i!&@”) [kopmn(ym - Yn)’H$2?koPmn)

(@)rnn = +(:; ; %)2 - (Yrn - Yn)2)#)(~oPm.)1,

–~ [7r/fOan~~2)(kOan) – 4~], m,. n

with ~mn~(zm – Zn)2 + (ym - y.)’, Where ~1 is Bessel

function of the first kind of first order and (~n, Vn ) is the
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(b)

Fig. 6, ReconstructIon error as a function of normalized standwd deviation
of Gaussian noise. (a) Example 1. (b) Example 2.

center of the cell n. Similarly

AC. denotes the nth segment of the conductor

[

,Tan,,(ko.n) [~oomn(xm - Zn)’
‘p~n

‘Id’?kohn)

(G,)m = +((ym – !/.)2 – (%I – %)2)
“Hp(kohn)lj m+n

-$[7rk~amH[2)(koan) - 4j], m.n

Since the values of the elements in the matrices [GG], [G7],

and [Gg] depend on the conductor’s shape, the following

expressions of [GG], [GT] and [G8] are only valid for the con-

ducting cylinder of circular cross section. It is straightforward

to calculate the matrices corresponding to the conductor with
different cross-section

“ [koPmn(Ym - !A)2H$2)(ko%m)

+ ((~rrz- z.)’ - (Y7n- Yn)2)~!2)(~oPmn)l
)

(“+C’os(dm) – Jyfp (Xm - x.)

“ (Ym - YJ[2J42) (~ohm)

– kopmnHp(kopmn)])
(G,)mn = ( j7ran Jl(koan)

–sin(d~) –
ML

(Zm - ‘&)

“ (Ym - Y?J[2H[2MOL%J

– kopmnHj2) (kl)pmn)]

)

(+Cos(om) –
j7rtLnJl(k@n)

2Pk

. [kopmn(zm - &J2Hj2@opmn)

+ ((yin – y.)’ – (Zm – Q2)H[2)(koPmn)l
)

(f&)m., =- ~fia;’y:a’)[kopmn (Ym -Yn)’il$’) (Icopmn)

with p~n = /(zm – zn)’ + (y~ – yn)’, where (z~, yn) is
the center of the nth segment of the conductor’s contour and +(($m–zn)’ –(ym–y. )’)H[2@Wmn)]
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(GIO)nn = -
j7ran Jl(kOan)

2P%.
(Xm - Zn)(ym - y.)

. [2H[2) (k,pmn) - kopmnH~2) (k,pmn)]

(GII)~n = ~ACn (Y~ - y~) ~f’)(~opmn)

Pm.

(G12)wt. = –
j’7ran~l(kOan)

2P#Sn
[kopmn(zm - Xn)z

. Hj2)(kopmn) + ((vm – y. )’ - (Zm - Zn)’)
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