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Image Reconstruction of a Complex
Cylinder Illuminated by TE Waves

Chien-Ching Chiu and Po-Tsun Liu

Abstract—The electromagnetic inverse scattering of a complex
cylinder illuminated by transverse electric (TE) waves is investi-
gated. The complex cylinder is a conductor coated by dielectric
materials. A group of various unrelated TE waves is incident
upon the object and the scattered fields are measured outside.
With prior knowledge of the conductor’s shape, the complex
permittivity distribution of the dielectric materials can be re-
constructed. The algorithm is based on the moment method and
the unrelated illumination method. Some numerical examples are
given to demonstrate the capability of the algorithm. Numerical
results show that the dielectric constant and the conductivity
distribution of the materials can be reconstructed even when the
scattered fields are contaminated by random Gaussian noise.

I. INTRODUCTION

HE INVERSE scattering problem is to reconstruct the
shape or the dielectric constant of an unknown scatterer
from the scattering data measured outside. This problem
has attracted increasing attention owing to interests in re-
mote sensing, medical imaging, and nondestructive evaluation.
Generally speaking, two categories of approaches have been
developed for the inverse scattering problem. This first is the
approximate approach, such as the physical optics method
[11-[3], the Born and the Rytov approximations [4]-[6]. The
inverse problem can be simplified if some approximations
are properly applied. However, there are limitations on these
approximations [1]-[6]. The second approach is to solve the
exact equations rigorously by numerical methods [7]-[14].
The rigorous one does not need approximation in formulation,
but its computation is more complicated than the approximate
one. Besides, most papers for two-dimensional (2-D) inverse
problem with the rigorous approach are dealt with TM wave
illumination because the vectorial problem can be simplified
to a scalar one. Two-dimensional inverse problem for the TE
waves is scarce [15], [16]. Based on the Newton—-Kantorovitch
method, an iterative algorithm to reconstruct the permittivities
of a dielectric object was proposed by Joachimowicz et al.
[15]. Otto and Chew developed the local shape-function al-
gorithm for the imaging of dielectric objects illuminated by
the TE waves. They used the T-matrix formulation instead of
standard integral equation method [16].
In this paper, the electromagnetic imaging of a complex
cylinder illuminated by TE waves is investigated. The complex
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Fig. 1. Geometry of the problem in the (x, y) plane.

cylinder is a conductor coated with dielectric materials. By
the knowledge of the conductor’s shape and the scattered field
measured outside, the permittivity distribution of the dielectric
materials has been reconstructed. This method is potentially
important in medical imaging and biological applications. In
Section II, the theoretical formulation is presented. Numerical
results are given in Section III. Finally some conclusions are
drawn in Section IV.

II. THEORETICAL FORMULATION

Fig. 1 shows the geometry of the problem. A conductor
coated by dielectric materials located in the free space is
infinitely extended in the z-direction. The relative complex
permittivity €. can be expressed as

o(z, y)
ez, y) = e (z,y) — j(w—eo'

Note that the e/“! time dependence is assumed for the for-
mulation.

Incident waves with the electric field polarized in the z-y
plane, i.e., transverse electric (TE) waves, is incident upon the
object. Owing to the added difficulty of induced polarization
charges, this vectorial problem cannot simplified into a scalar -
one. Thus the equivalent current concept and Hertz vectorial
potential techniques are employed to solve the problem. The
integral equation for the field inside the materials can be
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expressed as follows [17], [18]:
5 = (g +48) | [ 6 e - 0Bt |

9? — = I\ gt
+ 929y {/SG(K ) e(7") — 1) Ey(7 )ds ]

+§i£GﬁﬁM@Wﬂ4—EAﬂ 0
_ E’ " (7)

- { [ 6 7t - DE
+ ( + /4:0) [ G(F, 7 )(e.(F) — 1) y(F')ds’]

O {/ G )M, (T/)dl/} — By(7) 2

c

where I, and E} are the z and y components of the incident
field, respectively. E, and E, are the « and y components of
the total field, respectively. M, is the equivalent magnetic
surface current density in the z direction. G(7, 7) is 2-D
Green function for free space

G, ) = —%Héz)(kolf - 7).

Here H(SQ) stands for the Hankel function of the second kind
of the zeroth order.

Since the tangential components of E on the surface of the
perfect conductor should be zero, one can obtain the following
integral equation:

E, (M) + Ey(T)f)

- {| (G +4)
.UG(F 7 )(e (f/)_l)Ez(’l_’/)ds’} |
0936 UG () - 1E, (T)ds}

+—/mr7 4w}

|6 ey - e |

—fx{

+ {31“81/

+ (5 +8)[ [ 60 e - 0B |
- 50; G(F. T) M, (T )dl} } 3)

where 7 is the outward unit vector normal to the surface of
the conductor. The scattered field outside the scatterer can be
expressed by

B = (g +18) | [ 6 P ectr) - VBt |

+ o0 | [ 60 ) - 0B e |
+§Umﬂ~(ﬂﬂ @)

{EEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 44, NO. 10, OCTOBER 1996

Ex7) = bi—;& U G(T, ) (e(T) — I)Ew(?’)ds'}

+ (2 +i) | [ e et - DB, ()|

- % [/C G(F, T')MS(F’)dl'}. (5)

In order to solve the direct problem for given e.(¥) and
conductor’s shape, the moment method is applied. The di-
electric materials are divided into N sufficient small cells
such that the total field and the permittivity can be considered
constant in each cell. Similarly, the contour of the conductor
is divided into Ny sufficient segments. Thus the equivalent
magnetic surface current density over each segment can be
taken as constant. By employing the point-matching technique,
(1)—=(5) can be transformed into matrix equations

5 -{led @ ¢

[
(IO

[G]lr] +

[G’lo]] {[T] 0 }
[G12] || O [7]
() +[lgd o @

where (E) and (E}) denote the N; element incident field
column vectors. (E,) and (E,) are N element total field
column vectors. (E}) represents the Ny element incident
column vector. (E7) and (Ej) are the M element scattered
field column vectors. Here M is the number of measurement
points. (M,) is the Ny element column vector. The matrices
[G1], [G2] and [G4] are Ny x Ny square matrices. [G3] and
[Gs] are N1 x Ny matrices. [Gg] and [G7] are Ny x N;
matrices. [Gy] is a No X Ny matrix. [Gg), [G1g] and [G12] are
M x Ny matrices. [G11] and [G 3] are M x N, matrices. The
elements in matrices [G,], ¢+ = 1, 2,...,13, can be computed
by complex mathematic manipulation (see Appendix). [7] is
a Ny x N; diagonal matrix whose diagonal element [7],y, is
equal to (€. )n, — 1. [I] is a Ny x N, identity matrix. The direct
problem can be solved by using matrix equations (6)—(8).
The inverse problem is, given the shape of the conductor
and the measured scattered field, compute the permittivity
distribution of the dielectric materials. To solve this problem,
(M;) in (7) is first computed and substituted into (6) and
(8). Next we use 2NN; different incident column vectors to
illuminate the object, the following equations are obtained:

~(B}) =

<§§> N L[gi)]]

[Ge][] +

~[E}] = ([Gallre] — [Le])[Ex] )]

(Ef] = [Gea]lm][E] (10)
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where

o _ [B:+[GullGs] (B,
il = [E T [Grs)[Gs] (B} )}
4=z
G1]-[G3][Gs] 1[Gy

[G2] ]
- [Ga]—[G5][Gs] '[GA]

[Go] =[G 11][Gs] ' [Ge]
[G10]

= @] w= )

Here [E}] and [F;] are both 2N; x 2N; matrices. [Ef] is
a M x 2N; matrix. Note that the matrix [Gs] is diagonally
dominant and always invertible. It is worth mentioning that
other than the matrix [G:2], the matrix [G ;][] —[I] is always
a well-posed one in any case. Therefore (9) can be rewritten as

[E] = —([Gallm] — L)~ [Ef). an
Substituting (11) into (10), we get
(BB Ga] + [Ge))ln] = [E7)[E]

Gal=| i)

[G12] - [G13][Gs] 1G]

If we use the following matrix notations:

[0 = [Ef]1E]
(@] =[B)[E}] (G + [Gira].

Then [r;] can be found by solving the following equations:
[e][re] = [¢s]- (12)

From (12), all the diagonal elements in matrix [r] can be
determined by comparing the element with the same subscripts
which may be any row of both [¥,] and [¢]:

__(¢t%nn

nn — . < N
(1) W) n<s NV
or
(th)mn
_ _ = >N 1.
(T) (n= N1 ) (n—Ny) ) n> Ny +

Then the permittivities of each cell can be obtained as follows:
en = (T)nn + 1.

Note that there are a total of 20 possible values for each
element of 7. Therefore, the average value of these 2M data
is computed and chosen as final reconstruction result in the
simulation.

1923

In the above derivation, the key problem is that the incident
matrices [F}] must not be a singular matrix, ie., all the
incident column vectors that form the [E}] matrices, must be
linearly unrelated. Thus, if the object is illuminated by a group
of unrelated incident wave, it is possible to reconstruct the
permittivity distribution of the materials. Note that when the
number of cells becomes very large, it is difficult to make
such a great number of independent measurements. In such a
case, some regularization methods must be used to overcome
the ill-posedness.

III. NUMERICAL RESULTS

In this section, we report some numerical results obtained by
computer simulations using the method described in Section
II. Lossy dielectric materials coats on a perfectly conducting
rod of different cross-sections are considered. The sensitivity
of this method to random Gaussian noise in the scattered field
is also investigated.

The frequency of the incident waves is chosen to be 3
GHz and the number of illuminations is the same as that of
cells. The incident waves are generated by numerous groups
of radiators operated, simultaneously. Each group of radiators
is restricted to transmit a narrow bandwidth pattern which can
be implemented by antenna array techniques. By changing the
beam direction and tuning the phase of each group of radiators,
one can focus all the incident beams in turn at each cell of the
object. This procedure is named “beam focusing” [12]. Note
that this focusing should be set when the scatterer is absent.
Clearly, an incident matrix formed in this way is diagonally
dominant and its inverse matrix exists. The measurement is
taken on a circle of radius 0.1 m. For avoiding trivial inversion
of finite-dimensional problems, the discretization number for
the direct problem is four times as that for the inverse problem
in our numerical simulation.

A 5cm x 5 cm (1/2 wavelength X 1/2 wavelength) square
rectangular cross-sections of a perfectly conducting rod coated
with dielectric materials with rectangular cross-sections is our
first example. The dielectric materials are discretized into
10x10 cells and their relative permittivities are plotted in
Fig. 2. Each cells has a 0.5 cm x 0.5 cm cross section. The
reconstructed results are shown in Fig. 3. Note that there are
totally 768 data points being used for this example. The root
mean square error is about 1.5% for the complex permittivity
€c. It is apparent that the reconstruction is good.

In the second example, the circular cross-section of dielec-
tric materials coated on a cylindrical conductor is discretized
into 90 cells and their relative permittivities are plotted in
Fig. 4. The radius of conductor and the dielectric materials
are 1 cm and 2.5 cm (1/4 wavelength), respectively. The
reconstructed results are shown in Fig. 5. Note that there are
totaily 1620 data points being used. The root mean square
error is about 2.9% for the complex permittivity €.. We can
see the reconstruction is also good.

To investigate the effects of noise on our inverse algorithm,
we added Gaussian noise with zero mean to the real and
imaginary parts of the simulated data. Normalized standard
deviations of 0.001%, 0.01%, 0.1%, 1%, and 10% are used in
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.50 AC,, denotes the nth segment of the conductor
; —]Wanéilf;l,ioan) [kOpmn(-Em - xn)g
0.40? H(SZ)(kopmn)
o g (G4>m" = +((ym - yn) - (Im - xn)2>
80 3 1 H (k()pmn ]a m;ﬁn
% 0—5 i[wkoanHl( (koan) — 47], m=mn
» ]
Ea.z@{ jko (@ — )
1 — 4n 2
. (GS)mn - AO 7p Hl( )(kopmn).
B.‘l@é R . .
3 Since the values of the elements in the matrices [Gs], [G7],
and [Gs] depend on the conductor’s shape, the following
0. 00 T expressions of [Gg|, [G7] and [Gs] are only valid for the con-
10°° 18" 107 102 10" ducting cylinder of circular cross section. It is straightforward
normaltzed standord deviatton to calculate the matrices corresponding to the conductor with
@) different cross-section
2.80 ;
. . JranJi(koan)
. G mn — — 9m - A =z
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of Gaussian noise. (a) Example 1. (b) Example 2. _ kopmnHéz)(kopmn)]>
f the cell n. Similarl jmanJi(koan)
center of the cell n. Similarly + cos(fm) | —
" 203
gmanJi{koan) . [kOpmn(-Tm - xn) H(Z)(kﬂpmn)
—T(iﬁm = Zn)(Ym — Yn)
2 2
(oY = 4 12H (kapran) = ko penn S (Fopmn)], + (Y = ¥n)” = (Tm — 20)?)Hy >(kopmn)1>
m#n
0, m=n
Jko AC, (%~ 1, Jcos e;n-q-(yn_ym)sme
(G8)mn= H(Z[)(kopmn), mfé n
2kgrl AC, AC, AC, _
ik m n sin 27 )_ 27 1, +47rrm’ m=n
(G3)mn = ! OAO Y P —Y H(z)(kopmn)
jﬂanjl(koan
. (Gg)mn: _24)[k0pmn (ym_yn)2H0(2)(k0pmn)
with pmp = \/(Im - xn)z + (ym - yn)27 where (xnv yn) is Pmn

the center of the nth segment of the conductor’s contour and +((#m—2n) = (Ym —yn)z)Hl(2)(k0pmn)]



CHIU AND LIU: IMAGE RECONSTRUCTION OF A COMPLEX CYLINDER
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